

The Absolutely Awesome

jQuery
CookBook

(covers jQuery v1.11 or v2.1 & jQueryUI v1.11)

By Suprotim Agarwal

About the Author

Suprotim Agarwal, is an ASP.NET
Architecture MVP (Microsoft Most Valuable
Professional) and has been developing
web applications for over 15 years using
Microsoft and JavaScript technologies.
Suprotim is also an author and founder of

popular .NET websites like DotNetCurry and DevCurry and
the Editor-in-Chief of the DNC .NET Magazine. His first book
’51 Recipes with jQuery and ASP.NET Controls’ was accepted
very well by the developer community and he has been since
then yearning to author new books.

When he is not churning out code, he spends his time with
his family, checks out new gadgets, plays games on his Xbox
One and teaches programming to kids.

About the Reviewer

Irvin Dominin works as Technical lead in
SISTEMI S.p.A.(Turin, Italy) for .NET and
Windows Projects. He is an active member
on StackOverflow and spends most of his
time answering jQuery/JavaScript questions.

You can reach him at: irvin.dominin@gmail.com or on
LinkedIn

http://www.dotnetcurry.com/
http://www.devcurry.com/
http://www.dotnetcurry.com/magazine
https://www.linkedin.com/in/irvindominin

Table Of Contents

Section I - Some Concepts

Recipe 1
Getting started with jQuery & jQuery UI� 3

Recipe 2
Using Content Delivery Network (CDN) � 23

Recipe 3
Feature detection with Modernizr� 28

Recipe 4
bind() vs live() vs delegate() vs on() � 32

Recipe 5
Getting started with $.ajax()� 46

Recipe 6
Exploring Mustache.js for Templating� 60

Recipe 7
Using jsPerf to Test jQuery Selectors� 69

Recipe 8
Important Concepts for jQuery Developers� 76

Section II - Input Controls

Recipe 9
Miscellaneous Input Control Operations� 88

Recipe 10
Clear all Form Fields� 102

Recipe 11
Detect if TextBox Contents Have Changed� 106

Recipe 12
Automatically add Commas to a Number� 110

Recipe 13
Allow only AlphaNumeric Values� 119

Recipe 14
Total the values of Multiple TextBoxes� 122

Recipe 15
Adding Watermark to a TextBox� 126

Recipe 16
TextBox AutoComplete� 131

Recipe 17
Select/Deselect All CheckBoxes� 138

Section III - Tables, Panels and Tabs

Recipe 18
Miscellaneous Table Operations� 146

Recipe 19
Reverse the Order of Table Rows� 157

Recipe 20
Add/Delete Rows in a Table� 161

Recipe 21
Show/Hide Columns using CheckBoxes� 171

Recipe 22
Show/Hide Columns using Header Index� 176

Recipe 23
Check All CheckBoxes in a Table� 181

Recipe 24
Dynamically Add Thousands of Rows� 185

Recipe 25
Add Sorting and Pagination to a Table� 192

Recipe 26
Performing Calculations in a Table� 206

Recipe 27
Filtering a Table� 213

Recipe 28
Display Master Details Records� 220

Recipe 29
Create a Testimonial Section� 225

Recipe 30
Create a Sliding Overlay Panel� 230

Recipe 31
Add Notifications to your site� 235

Recipe 32
Create a Simple FAQ Accordion� 246

Recipe 33
Using the jQuery UI Accordion� 250

Recipe 34
Extending the jQuery UI Accordion� 261

Recipe 35
Create a Simple Tab Control� 269

Recipe 36
Using the jQuery UI Tabs Widget� 275

Recipe 37
jQuery UI Tabs - Advanced Scenarios� 279

Section IV - Unordered List and DropDown Control

Recipe 38
Sort Unordered List Alphabetically� 292

Recipe 39
Search and Delete Duplicate Items� 297

Recipe 40
Populate DropDown using JavaScript Object� 301

Recipe 41
Create a MultiLevel DropDown List� 305

Recipe 42
Programmatically Select an Option� 311

Recipe 43
Move Items between MultiSelect Lists� 316

Section V - Menus and TreeView

Recipe 44
Creating a Simple Menu� 323

Recipe 45
Working with jQuery UI Menu� 327

Recipe 46
Disable Right Click Context Menu� 340

Recipe 47
Auto Collapsible Nested TreeView� 346

Recipe 48
Add Expand/Collapse Icons in TreeView� 354

Section VI - Working with Images

Recipe 49
Create a Simple Image Gallery� 361

Recipe 50
Create an Image Carousel� 367

Recipe 51
Image Carousel using Twitter Bootstrap� 378

Recipe 52
Create a Flickr Image Gallery with Lazyloading� 387

Section VII - Ajax

Recipe 53
A Simple JSON Example� 399

Recipe 54
A Simple JSONP Example� 406

Recipe 55
Dynamically Load Scripts in a Sequence� 412

Recipe 56
Chain AJAX Requests with Deferred� 417

Recipe 57
Submit a Form Using Ajax� 423

Recipe 58
Filter Empty Form Fields from Submitting� 428

Recipe 59
Abort Ajax Requests� 431

Recipe 60
Cascading DropDown using AJAX� 434

Section VIII - Creating jQuery Plugins

Recipe 61
Create a Simple jQuery Plugin� 443

Recipe 62
Create a Running Counter Plugin� 454

Recipe 63
Table Sorting and Pagination Plugin� 461

Recipe 64
jQuery Validation Plugin� 47

Section IX - Some Generic Recipes

Recipe 65
Styling a Specific Hyperlink� 495

Recipe 66
Add nofollow for External Hyperlinks� 500

Recipe 67
Using the jQuery UI DatePicker Widget� 509

Recipe 68
Search and Highlight Text in a Web Page� 534

Recipe 69
Generate Table Of Contents for a Page	 � 539

Recipe 70
Time Bound Animations� 547

1﻿ ﻿

Recipe 6

Exploring Mustache.js for
Templating

One of the central tenets of modern web
development is the separation of structure/content
from behavior, a.k.a separate view from code. In our
projects, we either tend to craft our HTML elements
using string processing and concatenation; or build
elements using native DOM methods, and then
insert these elements into the DOM. However as the
size and complexity of a project grows, it leads to
spaghetti code. Maintainability becomes an issue in
such cases.

Templates can be beneficial here as templates simplify
the entire process, increase reusability and minimize

The Absolutely Awesome JQuer y CookBook2

the amount of code needed to generate HTML
elements from data.

Mustache.js (http://mustache.github.io/) is a logic-
less templating library, which essentially supports
the philosophy of little or no logic in your HTML
templates. That means in your templates, there are
no loops or if-else statements; instead there are only
tags. There are several other logic-less templates out
there like dust.js, handlebars.js etc. which provide
more functionality. We even have jQuery templating
libraries like jQuery Templates and jsViews, which
have been deprecated and superseded by the
jsRender project. However we are choosing Mustache.
js for our example as I find it very simple to use, and
moreover we do not require too much complexity in
this example. Having said that, feel free to look into
the other templating engines too and decide what’s
best for your project.

The premise of Mustache.js is quite simple. Think of
it as a blueprint of HTML markup which lets you flow
data on a page. You can use as many templates as you
want on a page, and take the same data and display it
in different ways.

To get started, download the Mustache library from
Github https://github.com/janl/mustache.js or use a

http://mustache.github.io/
https://github.com/janl/mustache.js

3﻿ ﻿

CDN from cdnjs.com.

In this example, we will read JSON data containing
author information and display it on a page using
Mustache template. The .json file is kept in the ‘scripts’
folder within ‘S1-Concepts’ folder. The structure of the
JSON data is as follows:

There are various methods for defining mustache
templates in your application, like using it inline or
using it as external templates. For our example, we
will create it inline but for better maintainability, you
should make it a practice of keeping it in a separate
file for your applications. So if you decide to keep the

Make sure your JSON is valid. Use a JSON validator like
jsonlint.com to validate your JSON.

The Absolutely Awesome JQuer y CookBook4

template in a separate file, all you have to do is create
a <templatename>.js file and then add a reference to
this file using the <script> tag.

Coming back to our example, I have created a new
page called ‘6-Mustache.html’ in the ‘S1-Concepts’
folder. Our template is called authortmpl and we will
define template data inside of a <script> tag with a
MIME type of text/template.

First off, we start by creating a placeholder for
authors. This is done using brace characters ({})
which looks like sideway mustaches (hence the name
mustache.js).

<script src=”../scripts/templatename.js”>
</script>

<script id=”authortmpl” type=”text/template”>
</script>

We are using a MIME type other than text/javascript to
prevent the browser from executing the template code.

<script id=”authortmpl” type=”text/template”>
 {{#authors}}
 {{/authors}}
</script>

5﻿ ﻿

Observe how we are closing the authors placeholder
using a backslash (/). This is similar to what we
do with HTML elements. If you observe, authors
is the name of the object in our JSON data file
authorslist.json. Mustache.js cycles through all the
authors in that object and applies the template that is
defined here.

In the template, we have a <div> with a class divwrap
and the author name, image, bio and Twitter handler
defined inside the <div>. Image and the paragraph
have been decorated with the imgwrap and pwrap
classes respectively. This is to beautify the template
with CSS. The css file ‘templ.css’ is kept in the ‘css’
folder in the ‘S1-Concepts’ folder. We have added a
reference to this css file inside the <head> section of

<script id=”authortmpl” type=”text/template”>
 {{#authors}}
 <div class=”divwrap”>
 <h2>{{name}}</h2>
 <img src=”images/{{image}}” 				
 alt=”{{name}}” class=”imgwrap”/>
 <p class=”pwrap”>{{bio}}</p>
 <p>Twitter: {{twitter}}</p>
 </div>
 {{/authors}}
</script>

The Absolutely Awesome JQuer y CookBook6

the HTML file.

If you observe, the tags defined inside the double
braces match the elements in our .json file. Eg:
{{name}} acts as placeholder which targets the
name element inside the .json file and so on. Overall
this template is nothing more than some html
and placeholders. As you can see, it is a logic-less
template. There are no programming blocks, if-else
statements or any loops.

The last step is to use jQuery to grab our
authorslist.json file and insert the data into our
template. We will use jQuery’s $.getJSON() method
to load JSON-encoded data from the server using a
GET HTTP request.

<link href=”css/templ.css” rel=”stylesheet”
/>

We briefly discussed JSON in the Getting Started with
Ajax chapter in Recipe 5. Using $.getJSON() has been
explained in Recipe 53.

7﻿ ﻿

Here the $.getJSON() function loads the data file
authorlist.json and executes a function literal to read
the contents of the JSON file, into a data object.

A variable called templ loads the content of the
authortmpl template that we created a short while
ago. We then use the Mustache.to_html() method
and pass the template and JSON data as parameters.

Moustache will process the data and feed it into the
template and create some HTML for us that we load
in an authorlist div.

Save the HTML file and view it in a browser. Here’s the
output:

$.getJSON(‘scripts/authorslist.json’,
function (data) {
 var templ = $(‘#authortmpl’).html();
 var mustch = Mustache.to_html(templ, data);
 $(“#authorlist”).html(mustch);
});

The Absolutely Awesome JQuer y CookBook8

9﻿ ﻿

Recipe 12

Automatically add
Commas to a Number

Different cultures have different ways of
representing Dates, Numbers, Currencies, and
Measurements etc. So Christmas day in India is
represented as 25/12/2014 (dd/MM/YYYY) whereas
the same is represented as 12/25/2014 (M/d/yyyy) in
North America and some other parts of the world.

Similarly different parts of the world represent
Numbers using different symbols. In the US, commas
and decimals are used to represent a number like
10000.20 as 10,000.20. However the same number in

The Absolutely Awesome JQuer y CookBook10

Europe is represented as 10.000,20.

JavaScript is not a culture-aware programming
language. Although JavaScript understands the
English culture’s decimal formatting, however
it does not know how to use a culture’s number
separator. Users have worked around this limitation
by programmatically determining culture information
from the browser’s navigator object, and representing
dates and numbers accordingly. However the
approach is not very consistent due to browser
inconsistencies.

There are various scripts that can be found on
the internet that allows you to automatically add
commas to a number. Create a HTML file called
’12-NumberFormatting.html’ in the ‘S2-InputControls’
folder and use the following markup:

We have added a textbox and a button control to the
page. Now add the following script (by a programmer
Elias Z) that adds a comma to a number after every
three digits:

<input id=”num” type=”text” />
<input type=”button” id=”btnformat”
value=”Format Number” />

11﻿ ﻿

The script uses a regular expression to add commas.
Passing a number like 23456789.12345 produces
23,456,789.12345, which is the desired result.

Live Demo: http://www.jquerycookbook.com/demos/
S2-InputControls/12–NumberFormatting.html

The script we just saw works fine, but what if at a
later date you want to represent the same number for
different countries?

Although JavaScript does not understand a culture’s

$(function () {
 $(‘#btnformat’).on(‘click’, function () {
 var x = $(‘#num’).val();
 $(‘#num’).val(addCommas(x));
 });
});

function addCommas(x) {
 var parts = x.toString().split(“.”);
 parts[0] = parts[0].replace(/\B(?=(\			
 d{3})+(?!\d))/g, “,”);
 return parts.join(“.”);
}

http://www.jquerycookbook.com/demos/S2-InputControls/12-NumberFormatting.html
http://www.jquerycookbook.com/demos/S2-InputControls/12-NumberFormatting.html

The Absolutely Awesome JQuer y CookBook12

number separator, it can certainly format numbers
based on a certain culture. It does so by using the
Number.prototype.toLocaleString() method. This
method allows you to convert a number to a string
that is formatted with local numeric formatting
settings.

The following code produces the output
23,456,789.123.

Using Globalize.js to format Numbers

Although the approaches shown here work, using
a well-tested library function is the right approach
to handle such scenarios. When your application
changes in the future to accommodate international
users, handling internationalization issues becomes a
nightmare without a library function. This is where the
Globalize.js library comes handy!

Globalize.js (https://github.com/jquery/globalize) is an
open source JavaScript library for internationalization
and localization and supports over 350 different
cultures. It was created originally by Microsoft and

var num = 23456789.12345;
num = num.toLocaleString();
console.log(num);

https://github.com/jquery/globalize

13﻿ ﻿

contributed to the jQuery library with the name
jQuery globalization plug-in. Later it was made a
standalone library.

Create a HTML file called ‘12.1-NumberFormatting.
html’. Download the Globalize files from https://
github.com/jquery/globalize . Look for the Download
ZIP button on the right hand side of the page and
click it to download a .zip archive. Extract the files
from the archive and copy the lib/globalize.js and
lib/cultures/globalize.cultures.js in the scripts folder.
globalize.js deals with localization whereas globalize.
cultures.js contains a complete set of the locales
(around 352 different cultures are supported as of this
writing).

It’s worth noting that Globalization is a native
feature in JavaScript with EcmaScript 5.1 and above.
Read http://www.ecma-international.org/ecma-
402/1.0/#sec-8 to learn more about the ECMAScript
Internationalization API Specification.

The globalize.culture.js file is around 850 KB. If you are
dealing with only a selected few regions, it is advisable
to use only those culture files found in the lib/cultures
folder. For eg: if you are planning to target only India
and US locales, then you can directly reference the
globalize.culture.en-IN.js and globalize.culture.en-US.js
files in your application to save some bandwidth.

https://github.com/jquery/globalize
https://github.com/jquery/globalize
http://www.ecma-international.org/ecma-402/1.0/#sec-8
http://www.ecma-international.org/ecma-402/1.0/#sec-8

The Absolutely Awesome JQuer y CookBook14

Now reference these two files in your application as
shown here:

Add the following HTML which contains some Labels,
a DropDown and a TextBox to show the formatted
number.

<script src=”../scripts/globalize.js”></
script>
<script charset=”utf-8” src=”../scripts/
globalize.cultures.js”></script>

<body>
 <p id=”para”></p>
 <label for=”ddlculture”>Select Region
 </label>
 <select id=”ddlculture”>
 <option></option>
 <option value=”zh-TW”>China</option>
 <option value=”fr-FR”>France</option>
 <option value=”de-DE”>Germany</option>
 <option value=”en-IN”>India</option>
 <option value=”ja-JP”>Japan</option>
 <option value=”ru-RU”>Russia</option>
 <option value=”es-ES”>Spain</option>
 <option value=”en-GB”>United Kingdom
 </option>

15﻿ ﻿

Now use this simple piece of code that uses the
Globalize.js library to format a number depending on
the country the user has selected from the dropdown.

 <option value=”en-US”>United States
 </option>
 </select>
 <label for=”txtNum”>Formatted Number:
 </label>
 <input type=”text” id=”txtNum” 			
 readonly=”true” />
</body>

$(function () {
 var number = 1234567.89;
 $(“#para”).html(“Original Number: “ + 		
 number);

 $(‘#ddlculture’).on(‘change’, function () {
 var culture = $(this).val();
 var formattedNumber =
formatNumber(number, 	 culture);
 $(“#txtNum”).val(formattedNumber);
 });

 function formatNumber(num, currentculture)
{
 Globalize.culture(currentculture);

The Absolutely Awesome JQuer y CookBook16

In the code above, we are tracking the change
event of the dropdown control and capturing the
culture of the selected dropdown list item. This is
possible as the value attribute of each dropdown
list item has the culture defined; for eg: <option
value=”en-IN”>India</option>. The original number
to be formatted and the culture, is passed to the
formatNumber() function which uses the Globalize.
format() function to return the formatted number. It’s
that simple!

Run the code and you will get the formatted number
based on the option selected.

 if (isNaN(num))
 return(‘Number not valid’);
 return (Globalize.format(num, “n2”));
 }
});

17﻿ ﻿

Live Demo: http://www.jquerycookbook.com/demos/
S2-InputControls/12.1-NumberFormatting.html

Similarly Globalize.js also formats a date using the
given format and locale. I will recommend you to read
the documentation at https://github.com/jquery/
globalize#date for some handy examples.

http://www.jquerycookbook.com/demos/S2-InputControls/12.1-NumberFormatting.html
http://www.jquerycookbook.com/demos/S2-InputControls/12.1-NumberFormatting.html
https://github.com/jquery/globalize#date
https://github.com/jquery/globalize#date

The Absolutely Awesome JQuer y CookBook18

Recipe 20

Add/Delete Rows in a
Table

In modern real-life applications, tables are rarely
static in nature. When it comes to manipulating
tables, the end user expects to add new rows or
delete existing ones on-the-fly.

This recipe demonstrates how to add new rows and
delete existing ones. We have briefly touched upon
adding new rows in Recipe 18.3. In this recipe, we will
see some additional scenarios.

Please note that these code snippets are suitable for
client-side processing only. If you have a database and
you need to update data, you will need server-side

19﻿ ﻿

processing and use a technology like ASP.NET or PHP
to add data to the data source through an Ajax call.
Although server-side is beyond the scope of this book,
I have mentioned some helpful links in the Further
Reading section that demonstrates how to add new
records in a table using jQuery and ASP.NET Web API.

20.1 - Insert a New row as the Last row of the Table

Create a HTML file called ‘20.1- AddRemoveRows.html’
in the ‘S3-TablesTabsPanels’ folder and add the
following markup:

<table id=”someTable”>
<thead>
 <tr>
 <th class=”empid”>EmpId</th>
 <th class=”fname”>First Name</th>
 <th class=”lname”>Last Name</th>
 <th class=”email”>Email</th>
 <th class=”age”>Age</th>
 </tr>
</thead>
<tbody>
 <tr>
 <td class=”empid”>E342</td>
 <td class=”fname”>Bill</td>
 <td class=”lname”>Evans</td>

The Absolutely Awesome JQuer y CookBook20

Write the following code to add new rows:

We are using the jQuery selector extension :last to
select the last matched row in our table and using
after() to insert the new row.

The above example works great for smaller tables,
however in a large table, using :last selector may

 <td class=”email”>Bill@devcurry.com</td>
 <td class=”age”>35</td>
 </tr>
 ...
</tbody>
</table>

$(function () {
 newRow = “<tr>” +
 “<td class=’empid’>E333</td>” +
 “<td class=’fname’>Fujita</td>” +
 “<td class=’lname’>Makoto</td>” +
 “<td class=’email’>fujita@devcurry.com</		
 td>” +
 “<td class=’age’>52</td>” +
 “</tr>”;
 $(‘#someTable > tbody > tr:last’).			
 after(newRow);
});

21﻿ ﻿

not give you the best performance. As per the jQuery
documentation, “:last is a jQuery extension and not part
of the CSS specs and hence cannot take advantage of
the powerful native DOM methods that can parse any
CSS selector, like querySelectorAll “. To achieve better
performance, we can rewrite our code as:

The code first selects the rows using a pure css
selector #someTable > tbody > tr and then uses
filter(“:last”) to match the last row of the table.

20.2 - Insert a New row in a Table at a Certain Index

Using the same markup of our previous recipe
(Recipe 20.1), let’s say you want to insert a new
row as the 2nd row in a table. Create a new file
called ‘20.2-AddRowsAtIndex.html’ in the ‘S3-
TablesTabsPanels’ folder and use the following code:

$(‘#someTable > tbody > tr’).filter(“:last”).
after(newRow);

var index = 2;
newRow = “<tr>” +
“<td class=’empid’>E333</td>” +
“<td class=’fname’>Fujita</td>” +
“<td class=’lname’>Makoto</td>” +

The Absolutely Awesome JQuer y CookBook22

Since indexes are 0 based and we are passing
index=2, eq(index) would mean eq(2) i.e. the 3rd
row. So to add this to the 2nd row of a table, you first
need to do index-1 and then you need to go back to
the 2nd row of the table and insert before() that, so
that this new row now becomes the 2nd row of the
table.

Alternatively let’s say you want to insert a row as the
2nd row in a table, you can do the following:

“<td class=’email’>fujita@devcurry.com</td>”
+ “<td class=’age’>52</td>” + “</tr>”;
$(‘#someTable > tbody > tr’).eq(index-1).
before(newRow);

$(‘#someTable > tbody > tr:first’).
after(newRow);

23﻿ ﻿

which uses the :first selector to match the first row
and insert a row after() it.

Similarly you can also explore other child filter
selectors like first-child, nth-child and so on from the
jQuery documentation at api.jquery.com/category/
selectors/child-filter-selectors/

20.3 - Remove all Rows Except Header

If your table is well defined and contains a <thead>
<tbody>, this piece of code will work to remove all the
rows, except the header row:

Here again just like we saw earlier for the last selector,
for large tables, you will get performance benefits by
using filter(“:first”).

To become a better developer, I cannot emphasize the
fact enough that you should take out some time and go
through the jQuery documentation. It’s probably one of
the most well written documentation of any JavaScript
library out there and getting familiar with different
selectors and API’s, will save you tons of time and less
frustration in a project.

$(‘#someTable tbody tr’).remove();

http://api.jquery.com/category/selectors/child-filter-selectors/
http://api.jquery.com/category/selectors/child-filter-selectors/

The Absolutely Awesome JQuer y CookBook24

This code uses the remove() method to remove a set
of rows inside tbody. Since we haven’t supplied the
remove() method with any selector as a parameter,
the above code removes all rows, as well as all
elements, events and data in the rows.

In case you do not have a <thead> defined and want
to remove all rows except the first one (assuming first
row is meant to be a header), use this code:

..where the selector gt(0) selects all rows at an index
greater than zero, within the matched rows. Similarly
if you want to keep the first two rows and remove all
others, change the above code to this:

If you want to remove all rows without removing data
and events, use detach() instead of remove().

$(‘#someTable tr:gt(0)’).remove();

$(‘#someTable tr:gt(1)’).remove();

For better performance in modern browsers, use
‘$(“your-pure-css-selector”).slice(index)’ instead. As seen
and discussed earlier, in our case, a pure css selector
would be ‘$(‘#someTable tr’)’. All you need to do is use it
with slice() to remove all except the first row.

25﻿ ﻿

slice() is zero based and takes two arguments,
start and end. Since we are supplying 1 as the first
parameter to slice(), the above statement will return
a new jQuery object that selects from the first row,
to the end. Calling remove() removes this set of
matched element returned by slice and you are left
with only the first row.

As you must have observed with all these examples,
there are multiple ways in jQuery to achieve a certain
requirement. A point to always remember is that
jQuery will always use a native method (in our case
we discussed querySelectorAll) if available, as it’s
much quicker at getting elements and gives a notable
performance with large sets of data. jsperf.com is your
friend to run tests when you are in doubt as to which
selectors or methods to use in your code for the
browsers you are supporting. Refer to Recipe 7 if you
haven’t already, for a quick tutorial on using jsperf.

20.4 - Remove a Row by Clicking on it

To remove a row when it is clicked, use remove()

$(‘#someTable tr’).slice(1).remove();

The Absolutely Awesome JQuer y CookBook26

this here represents the clicked row. $(this)
converts it into a jQuery object on which the
remove() method is called to remove the row.

Live Demo: http://www.jquerycookbook.com/demos/
S3-TablesTabsPanels/20.4-RemoveRow.html

20.5 - Remove Rows by clicking on them, except for
the last one left

The previous recipe (20.4) removes any and all rows
by clicking on it. However if you want that the table
should have atleast one row left, use the following
code:

$(‘#someTable tbody tr’).on(“click”, function
() {
 $(this).remove();
 return false;
});

var $tbl = $(‘#someTable tbody tr’);
var ctr = $tbl.length;
$tbl.on(“click”, function () {
 if (ctr == 1) {
 alert(‘your table should have atleast one 	
 row’)
 }

http://www.jquerycookbook.com/demos/S3-TablesTabsPanels/20.4-RemoveRow.html
http://www.jquerycookbook.com/demos/S3-TablesTabsPanels/20.4-RemoveRow.html

27﻿ ﻿

This code uses $tbl.length to count the number
of rows in the table. Using if..else, we check if the
length == 1, i.e. if this is the last row left then do not
remove the row; else remove the row and reduce the
length count by 1.

Live Demo: http://www.jquerycookbook.com/demos/
S3-TablesTabsPanels/20.5-RemoveRowLast.html

Further Reading:

http://api.jquery.com/category/manipulation/dom-
insertion-outside/

http://api.jquery.com/eq/

http://api.jquery.com/remove/

Simple Application using Knockout.js, jQuery and ASP.
NET MVC 4.0 with WEB API (http://www.dotnetcurry.
com/showarticle.aspx?ID=847)

else {
 $(this).remove();
 ctr--;
 return false;
 }
});

http://www.jquerycookbook.com/demos/S3-TablesTabsPanels/20.5-RemoveRowLast.html
http://www.jquerycookbook.com/demos/S3-TablesTabsPanels/20.5-RemoveRowLast.html
http://api.jquery.com/category/manipulation/dom-insertion-outside/
http://api.jquery.com/category/manipulation/dom-insertion-outside/
http://api.jquery.com/eq/
http://api.jquery.com/remove/
http://www.dotnetcurry.com/showarticle.aspx?ID=847
http://www.dotnetcurry.com/showarticle.aspx?ID=847

The Absolutely Awesome JQuer y CookBook28

Recipe 24

Dynamically Add
Thousands of Rows

jQuery gives us great power when it comes to
manipulating the DOM, and with Great power, comes
Great responsibility! Think about some of these
functions that you can perform very easily using
jQuery:

• hide/delete/insert/update elements
• resize elements/change dimensions
• move/animate elements

and so on..

All these cause what is known as a reflow operation

29﻿ ﻿

in the browser. Google Developer’s documentation
defines reflow as “Reflow is the name of the web
browser process for re-calculating the positions and
geometries of elements in the document, for the purpose
of re-rendering part or all of the document”.

Reflows can be very expensive if not done correctly.

To understand this better, let’s take an example where
we have to dynamically insert 1000’s of rows in a
table. We will make use of append() to add 5000 rows
using two approaches.

In the first approach, we will append the new rows to
the table, every time the loop iterates.

In the second approach, we will construct a string
with the new rows, and then append the string
only once after the loop is completed. We will
then compare the two approaches and derive our
conclusion as to which one of them is better and why.

To iterate the loop, I will be using the for loop rather
than $.each. I have observed with some experience

If you plan on becoming a front end engineer, I would
advise you to spend some time reading about reflow
and repaint operations.

The Absolutely Awesome JQuer y CookBook30

and some tests on jsperf.com (see Recipe 7) that for
large loop operations, for performs better.

Let’s get started. Create a new file called
‘24-TablePerformance.html’ in the ‘S3-
TablesTabsPanels’ folder and the add the following
markup:

Now write the following code to add 5000 rows
dynamically to the table:

<body>
 <p id=”result”></p>
 <table id=”someTable”>
 <thead>
 <tr>
 <th class=”empid”>EmpId</th>
 <th class=”fname”>First Name</th>
 <th class=”lname”>Last Name</th>
 </tr>
 </thead>
 <tbody>
 </tbody>
 </table>
</body>

31﻿ ﻿

$(function () {
 var $tbl = $(“#someTable”);

 // Approach 1: Using $.append() inside loop
 var t1 = new Date().getTime();
 for(i=0; i < 5000; i++){
 rows = “<tr><td>” + i + “</td><td>FName
 </td><td>LName</td></tr>”;
 $tbl.append(rows);
 }
 var t2 = new Date().getTime();
 var t1t2 = t2-t1;
 $(‘#result’).append(“Approach 1: Append 	
 Inside Loop took “ + t1t2 + “ milliseconds” 	
 + “</br>”);

 // Approach 2: Using $.append() outside 	
 loop
 var newrows;
 var t3 = new Date().getTime();
 for(i=0; i < 5000; i++){
 newrows += “<tr><td>” + i + “
 </td><td>FName</td><td>LName</td></tr>”;
 }
 $tbl.append(newrows);
 var t4 = new Date().getTime();
 var t3t4 = t4 - t3;

The Absolutely Awesome JQuer y CookBook32

As discussed, we have two sets of code. Approach 1
calls append on each iteration of the loop whereas
Approach 2 constructs a string (using +=) with the
new rows and calls append only once after the loop
iteration.

The difference is considerable, especially on IE and
Safari.

 $(‘#result’).append(“Approach 2:
Append Once 	 Outside Loop “ + t3t4 + “
milliseconds” + 	 “</br>”);
});

33﻿ ﻿

Our example took just 2 columns and some fixed
length data. Imagine in a real world scenario, where
there are a couple of columns with variable data; the
results would be dramatic.

In Approach 1, every time you are adding a new row
to the table inside the loop, you are causing a reflow
and the entire page geometry gets calculated every
time with the new DOM change. In Approach 2,
theoretically speaking, the reflow occurs only once,
since the rows are constructed and added outside the
loop. That’s why it’s very important for a front-end
engineer to understand and evaluate the difference
between the two approaches. jsperf.com (see Recipe
7) is your friend here!

Note: In Approach 2, you could squeeze additional
performance by not concatenating the string but
rather adding it as individual elements of an array,
and then use join outside the loop to construct the
entire string in one go. If you know the length of the
array beforehand, that will help too. Check the Further
Reading section to learn more about the same.

Live Demo: http://www.jquerycookbook.com/demos/
S3-TablesTabsPanels/24-TablePerformance.html

http://www.jquerycookbook.com/demos/S3-TablesTabsPanels/24-TablePerformance.html
http://www.jquerycookbook.com/demos/S3-TablesTabsPanels/24-TablePerformance.html

The Absolutely Awesome JQuer y CookBook34

Further Reading:

https://developers.google.com/speed/articles/reflow

http://api.jquery.com/append/

http://www.scottlogic.com/blog/2010/10/15/
javascript-array-performance.html

https://developers.google.com/speed/articles/reflow
http://api.jquery.com/append/
http://www.scottlogic.com/blog/2010/10/15/javascript-array-performance.html
http://www.scottlogic.com/blog/2010/10/15/javascript-array-performance.html

35﻿ ﻿

Recipe 26

Performing Calculations in
a Table
In this recipe, we will learn to traverse all of the
values in a table column, convert the values to
numbers, and then sum the values.

Create a new file called ‘26-TableCalculateTotal.html’
in the ‘S3-TablesTabsPanels’ folder. We will need a
simple HTML Table to get started. Our table has an id
attribute of tblProducts and a <thead> , <tbody> and
<tfoot> to go with it.

The Absolutely Awesome JQuer y CookBook36

The Table has 4 columns – Product, Quantity, Price
and Sub-Total. It is assumed here that the Product and
the Price info will be prepopulated (in your case
probably from a database). When the user enters the
Quantity, the Sub-Total is automatically calculated
using Price x Quantity. The <tfoot> contains a row
representing a GrandTotal which is the sum of all the
cells in the Sub-Total column.

<table id=”tblProducts”>
<thead>
...
</thead>
<tbody>
...
</tbody>
<tfoot>
...
</tfoot>
</table>

<thead>
 <tr>
 <td>Product</td>
 <td>Quantity</td>
 <td>Price</td>
 <td>Sub-Total</td>
 </tr>

37﻿ ﻿

Let’s now see the script which will calculate the Sub-
Total column values. We will also sum all the values
in the Sub-Total column, and display the result in the
table footer.

</thead>
<tbody>
 <tr>
 <td><input type=”text” class=”pnm” 			
 value=”Product One” name=”pnm” /></td>
 <td><input type=”text” class=”qty” 			
 value=”” name=”qty”/></td>
 <td><input type=”text” class=”price” 		
 value=”220” name=”price”/></td>
 <td><input type=”text” class=”subtot” 		
 value=”0” name=”subtot”/></td>
 </tr>
</tbody>
<tfoot>
 <tr>
 <td></td>
 <td></td>
 <td></td>
 <td><input type=”text” class=”grdtot” 		
 value=”” name=””/></td>
 </tr>
</tfoot>
</table>

The Absolutely Awesome JQuer y CookBook38

The following script selects all the table rows <tr>’s
within the table body. The next step is to use jQuery’s
built-in each() iterator to loop over this collection of
<tr> elements. For each iteration of the loop, $(this)
refers to a <tr> element, which is being assigned to a
local variable $row.

Every time the user enters a value in the Quantity
field, the subtotal column should be automatically
populated by multiplying the Price with the
Quantity entered. The following script achieves this
functionality:

var $tblrows = $(“#tblProducts tbody tr”);
$tblrows.each(function (index) {
 var $tblrow = $(this);
 ...
});

What if your table has no <thead>? We are using a
well-structured markup here with a <thead> and
<tbody> so we could use $(“#tblProd tbody tr”) to select
all rows in the table body. If you do not have a thead,
tbody and instead your first row is a header row, then
use this selector to skip the first row:

var $tblrows = $(“#tblProducts tr:gt(0)”);

39﻿ ﻿

Both global functions parseInt and parseFloat
convert strings to numbers. I tend to use parseFloat
over parseInt, as it is more adaptable in scenarios
where I am unsure if all the numbers will be integers.
parseFloat works with both integers and floating-
point numbers. In this example, I am assuming that
the values for Quantity are coming from my database,
so they do not contain any decimals. In such scenarios,
I can safely use parseInt for integer columns.

$tblrow.find(‘.qty’).on(‘change’, function ()
{
 var qty = $tblrow.find(“[name=qty]”).val();
 var price = $tblrow.find(“[name=price]”). 		
 val();
 var subTotal = parseInt(qty,10) * 			
 parseFloat(price);
 ...
});

If you observe, the parseInt function has two arguments:
a required numeric string, and an optional radix
(base). The radix is the number’s base, as in base-8
(octal), base-10 (decimal) and base-16 (hexadecimal).
If the radix is not provided, it’s assumed to be 10, for
decimal. Although the second argument is optional,
it’s considered a good practice to always provide it
explicitly.

The Absolutely Awesome JQuer y CookBook40

If the string provided doesn’t contain a number, NaN
is returned. So we should check to see if the subTotal
is not a NaN. The next step is to use toFixed()
method to format the subTotal to two decimal points.

We then use each() to loop through the subTotal
column and sum the text of subtotal in each row and
assign the result to the grandTotal variable. The last
step is to assign the result to the grandTotal cell.

if (!isNaN(subTotal)) {

 $tblrow.find(‘.subtot’).val(subTotal.
toFixed(2));
 ...
}

if (!isNaN(subTotal)) {
 $tblrow.find(‘.subtot’).val(subTotal.		 	
 toFixed(2));
 var grandTotal = 0;
 $(“.subtot”).each(function () {
 var stval = parseFloat($(this).val());
 grandTotal += isNaN(stval) ? 0 : stval;
 });
 $(‘.grdtot’).val(grandTotal.toFixed(2));
}

41﻿ ﻿

Save and load the page in your browser, enter the
Quantity and you should see the Sub-Total rows
populated, as well as a sum of the Sub-Total in the
footer of your table.

Live Demo: http://www.jquerycookbook.com/demos/
S3-TablesTabsPanels/26-TableCalculateTotal.html

Further Reading:

Why Radix? https://developer.mozilla.org/en-US/docs/
Web/JavaScript/Reference/Global_Objects/parseInt

http://www.jquerycookbook.com/demos/S3-TablesTabsPanels/26-TableCalculateTotal.html
http://www.jquerycookbook.com/demos/S3-TablesTabsPanels/26-TableCalculateTotal.html

The Absolutely Awesome JQuer y CookBook42

Recipe 34

Extending the jQuery UI
Accordion

By default, the jQuery UI Accordion sets an equal
height for all its Panels. However this behaviour
leads to extra whitespace in those content panels
which have less content, in comparison to the others.
In our previous recipe (Recipe 33.1), we saw how to
save whitespace by using the heightStyle property
to enable the panel to be only as tall as its content.

Alternatively, we can also extend the existing jQuery
UI Accordion widget and provide a consistent way for
users to manipulate the panels. In this recipe, we will
provide users with the option to drag and resize the
content panel at their own will.

43﻿ ﻿

Understanding the jQuery UI Widget Factory

The jQuery UI Widget Factory is simply a function or
factory method ($.widget) on which all of jQuery UI’s
widgets are built. It takes the widget name and an
object containing widget properties as arguments and
creates a jQuery plugin - that provides a consistent
API to create and destroy widgets, encapsulate its
functionality, allow setting options on initialization,
and provide state management. In simple words, it
allows you to conform to a defined standard, making
it easier for new users to start using your plugin.

Create a new HTML page ‘34-jQueryUIAccordion-
extending.html’ in the ‘S3-TablesTabsPanels’ folder.
The markup remains the same as the one used in
Recipe 33.

Creating a Widget Extension

You can create new widgets with the widget factory
by passing the widget name and prototype to
$.widget() in the following manner:

All jQuery UI’s widgets use the same patterns as
defined by the widget factory. If you learn how to use
one widget, you’ll know how to use all of them.

The Absolutely Awesome JQuer y CookBook44

This will create a newAccordion widget in the custom
namespace.

However in our case, we want to extend the existing
Accordion widget. To do so, pass the constructor of the
jQuery UI Accordion widget ($.ui.accordion) to use
as a parent, as shown here:

By doing so, we are indicating that the newAccordion
widget should use jQuery UI’s Accordion widget as a
parent. In order to make our new widget useful, we
will add some methods to its prototype object, which
is the final parameter passed to $.widget(). The shell
of our widget will look similar to the following:

$.widget(“custom.newAccordion”, {});

$.widget(“custom.newAccordion”, $.ui.
accordion, {
});

(function ($) {
 $.widget(“custom.newAccordion”, $.ui.			
 accordion, {
 options: {
 },
 _create: function () {
 },

45﻿ ﻿

Let’s add some functionality to our widget. Observe
the following code:

 destroy: function () {
 },
 disable: function () {
 },
 enable: function () {
 },
 });
})(jQuery);

If you observe, the jQuery UI plugin has been
encapsulated in a self-executing anonymous function
(function ($) {}). This aliases $ and ensures that
jQuery’s noConflict() method works as intended.

(function($) {
$.widget(“custom.newAccordion”, $.ui.
accordion, {
 options: {
 resizable: true
 },
 _create: function () {
 this._super();
 if (!this.options.resizable) {
 return;
 }

The Absolutely Awesome JQuer y CookBook46

We start by providing flexible configuration through
options and initialize them with default values. In
this case, we are setting resizable to true by default.
The _create() method is the widget’s constructor. In

this.headers.next().resizable({ handles: “s”
})
 .css({
 “margin-bottom”: “5px”,
 “border-bottom”:”1px dashed”,
 “overflow”: “hidden”
 });
 },
 _destroy: function () {
 this._super();
 if (!this.options.resizable) {
 return;
 }
 this.headers.next()
 .resizable(“destroy”)
 .css({
 “margin-bottom”: “2px”,
 “border-bottom”: “1px solid”,
 “overflow”: “”
 });
 },
});
})(jQuery);

47﻿ ﻿

this method, we are replacing the original_create()
method with our new implementation. this_super()
ensures that the default setup actions of the
accordion widget happens.

The next step is to find all content sections of the
accordion and apply the resizable() widget.

The “s” handle redirects the resizable widget to only
show a south handle which means the user can use
the cursor at the bottom of each Accordion section to
resize it up or down.

We are also using some CSS to set the margin-
bottom, border-bottom and overflow properties.
Instead of adding CSS properties manually, you can
even use a class like this

Widget properties which begin with an underscore such
as _create, are considered private.

this.headers.next().resizable({ handles: “s”
})

this.headers.next().resizable({ handles: “s”
}).addClass(“mycss”);

The Absolutely Awesome JQuer y CookBook48

The destroy() method removes the widget
functionality and returns the element back to its pre-
init state.

The final step is to call our newAccordion widget on
the faq div and passing resizable to true:

Save and view the example in your browser and
you will see the following Accordion with a dashed
bottom border, 5px spacing and a resizable panel:

You can resize the panel by placing the cursor at the
bottom of each section and dragging it up and down
to suit your needs. The screenshot here shows the
expanded accordion:

$(function () {
 $(“#faq”).newAccordion(
 { resizable: true }
);
});

49﻿ ﻿

Live Demo: http://www.jquerycookbook.com/
demos/S3-TablesTabsPanels/34-jQueryUIAccordion-
extending.html

Further Reading: http://api.jqueryui.com/jQuery.
widget

http://www.jquerycookbook.com/demos/S3-TablesTabsPanels/34-jQueryUIAccordion-extending.html
http://www.jquerycookbook.com/demos/S3-TablesTabsPanels/34-jQueryUIAccordion-extending.html
http://www.jquerycookbook.com/demos/S3-TablesTabsPanels/34-jQueryUIAccordion-extending.html
http://api.jqueryui.com/jQuery.widget
http://api.jqueryui.com/jQuery.widget

The Absolutely Awesome JQuer y CookBook50

Recipe 56

Chain AJAX Requests with
Deferred

Imagine a scenario where you have a bunch of
functions to execute asynchronously, but each
function depends on the result of the previous one
and you do not have an idea when each function will
complete execution and pass the result to the next
function.

In such cases, you can write callbacks. Callbacks are
useful when working with background tasks because
you don’t know when they will complete. Here’s a
prototype of callbacks in action:

51﻿ ﻿

and the callbacks can be defined as:

and so on..

However this code style leads to too much nesting
and becomes unreadable if there are too many
callback functions. The same functionality can be
achieved very elegantly without too much nesting
using Deferred and Promise. Let’s cook up an example:

We have four functions A(), B(), C() and D() that will
execute asynchronously. However function B() relies

A(function () {
 B(function () {
 C()
 })
});

function A(callback) {
 $.ajax({
 //...
 success: function (result) {
 //...
 if (callback) callback(result);
 }
 });3
}

The Absolutely Awesome JQuer y CookBook52

on the result of function A(). Similarly function C()
relies on the result of function B() and so on. The
task is to execute these functions one after the other,
and also make the results of the previous function
available in the next one.

Create a new file ‘56-ChainFunctions.html’ in the ‘S7-
Ajax’ folder. Use the following code:

Asynchronous requests cannot be guaranteed to finish
in the same order that they are sent. However using
deferred objects, we can make sure that the callbacks
for each async request runs in the required order

$(function () {
 function A() {
 writeMessage(“Calling Function A”);
 return $.ajax({
 url: “scripts/1.json”,
 type: “GET”,
 dataType: “json”
 });
 }
function B(resultFromA) {
 writeMessage(“In Function B. Result From A
= 	 “ + resultFromA.data);
 return $.ajax({

53﻿ ﻿

 url: “scripts/2.json”,
 type: “GET”,
 dataType: “json”
 });
}

function C(resultFromB) {
 writeMessage(“In Function C. Result From B 		
 = “ + resultFromB.data);
 return $.ajax({
 url: “scripts/3.json”,
 type: “GET”,
 dataType: “json”
 });
}

function D(resultFromC) {
 writeMessage(“In Function D. Result From C 		
 = “ + resultFromC.data);
}

A().then(B).then(C).then(D);

function writeMessage(msg) {
 $(“#para”).append(msg + “</br>”);
 }
});

The Absolutely Awesome JQuer y CookBook54

Observe this important piece of code:

From the jQuery Documentation:

And that’s what we are doing here. Every Ajax method
of jQuery already returns a promise. When the Ajax
call in function A() completes, it resolves the promise.
function B() is then called with the results of the Ajax
call as its first argument. When the Ajax call in B()
completes, it resolves the promise and function C() is
called with the results of that call and so on. Here we
are just adding return in every function to make this
chain work.

Live Demo: http://www.jquerycookbook.com/demos/
S7-Ajax/56-ChainFunctions.html

By the way, you may have observed that we are using
the same type and datatype settings for all the AJAX
calls. You can clean up your code by specifying global
settings using $.ajaxSetup.

A().then(B).then(C).then(D);

Callbacks are executed in the order they were added.
Since deferred.then returns a Promise, other methods
of the Promise object can be chained to this one,
including additional .then() methods.

http://www.jquerycookbook.com/demos/S7-Ajax/56-ChainFunctions.html
http://www.jquerycookbook.com/demos/S7-Ajax/56-ChainFunctions.html

55﻿ ﻿

Create a new file ’56.1-ChainFunctions.html’ in the ‘S7-
Ajax’ folder and use the following code:

and then reduce each call to:

Run the sample and you will get the same output.

Live Demo: http://www.jquerycookbook.com/demos/
S7-Ajax/56.1-ChainFunctions.html

$.ajaxSetup({
 type: ‘GET’,
 dataType: “json”,
 delay: 1
});

function A() {
 writeMessage(“Calling Function A”);
 return $.ajax({
 url: “scripts/1.json”,
 });
}

http://www.jquerycookbook.com/demos/S7-Ajax/56.1-ChainFunctions.html
http://www.jquerycookbook.com/demos/S7-Ajax/56.1-ChainFunctions.html

The Absolutely Awesome JQuer y CookBook56

End of Sample Chapters

 Buy this eBook from

www.jquerycookbook.com

http://www.jquerycookbook.com

